Leave a comment

Centauri Dreams: Starship Thinking

 

Posted: 29 Jan 2016 07:21 AM PST

It’s been awhile since I’ve seen Ian Crawford (Birkbeck College, London) — I think we last talked at one of the 100 Year Starship events — but I’m pleased to see his latest popular essay How to build a starship – and why we should start thinking about it now. A professor of planetary sciences and advocate of manned space exploration here in the Solar System, Crawford takes on the necessary task of acquainting a larger audience with something Robert Forward put forth as a maxim: ‘Starflight is difficult and expensive, but not impossible.’

Following decades of work on beamed sail technologies, antimatter and space tethers, Forward wrote that line in 1996, but it summed up statements he had been making for decades. Gregory Matloff and Eugene Mallove would echo him in their Starflight Handbook(Wiley, 1989), with an emphasis on the ‘difficult’ aspect of the journey: “Starflight is not just very hard, it is very, very, very hard!” So I guess we could say starflight is hard3. Matloff, who knew Forward well, has never entertained any illusions about the magnitude of the task.

Neither has Ian Crawford, who wants to keep Forward’s injunction out there. If there were some aspect of known physics that would have to be contradicted to make star travel possible, we would look at the matter differently. But instead we find vast problems of engineering and the need to overcome huge distances with craft that can operate for decades and perhaps centuries, returning data at the end of the journey. Crawford’s work has always engaged me because of his inherent optimism, and here he makes the case that ongoing work in areas like nanotechnology may get us to at least small, robotic space probes sooner than we think.

Igniting the Effort

image_preview

The driver for such an attempt, in my view, would be the discovery of a nearby world in the habitable zone of its star. But it would take more than its presence. We would also have to have data from future space missions (and the next generation of ground-based telescopes) that showed biosignatures in the planet’s atmosphere. If we could make a strong case for there being a living world around, say, a planet of Proxima Centauri, we would surely want to make closeup investigations to learn about how evolution has played out on such a world.

Crawford gives a nod to the five craft that are currently on track to leave our Solar System altogether — the two Pioneers, the two Voyagers, and New Horizons. All will fall silent long before they approach another star, though I have been trying to resurrect a Sagan idea from the early Voyager days that one or both craft could have their trajectories adjusted with a final, tank-emptying burn to make a stellar encounter more likely in tens of thousands of years. If this sounds quixotic, it’s meant to be. It would be a purely symbolic statement of what our species can do (and as for the more practical details, I’ll turn you to my essay Voyager to a Star).

Image: Professor Ian Crawford doing astrobiological fieldwork on the Kverkfjoll volcano, Iceland. Credit: Ian Crawford.

But actual scientific return is another matter. It will require not ‘new physics’ but an expansion of our existing capabilities into areas of long-lifetime instrumentation and advanced laser communications, not to mention propulsion technologies like beamed power, fusion or more exotic methods. We’ve investigated the latter in the pages of Centauri Dreams, and Crawford has written them up in a 2010 paper called “‘A Comment on ‘The Far Future of Exoplanet Direct Characterization’ – The case for Interstellar Space Probes” (citation below).

Over the years, scientists have worked out a number of propulsion designs that might be able to accelerate space vehicles to these velocities… While many of these designs would be difficult to construct today, as nanotechnology progresses and scientific payloads can be made ever smaller and lighter, the energies required to accelerate them to the required velocities will decrease.

So we can talk about nuclear possibilities. Here I lean much more strongly toward nuclear pulse methods (think Project Orion) than fusion, though it will be interesting to see what the Icarus Interstellar team comes up with as it continues to refine the 1970’s-era Project Daedalus starship, which itself was based on a still-unavailable method called inertial confinement fusion, as studied by Friedwardt Winterberg. Using the energy released by either splitting or fusing atomic nuclei has long been studied by interstellar theorists, as has the much more powerful annihilation of matter and antimatter, though this is plagued by production problems (we can’t produce remotely enough) and certainly by storage issues for large amounts of antimatter.

Everything from interstellar ramjets to beamed laser or microwave sails is in the database here. Of the latter, Crawford says this:

Spacecraft using “light-sails” pushed by lasers based in the solar system are also a possibility. However, for scientifically useful payloads this would probably require lasers concentrating more power than the current electrical generating capacity of the entire world. We would probably need to construct vast solar arrays in space to gather the necessary energy from the sun to power these lasers.

Absolutely so, making the construction of a space-based infrastructure here in the Solar System a prerequisite for sending our first true interstellar probes. As Crawford notes, we are talking about systems far too large and certainly too power-laden to contemplate launching from Earth. They’ll be constructed in space as an outgrowth of this infrastructure. “This means,” Crawford adds, “that interstellar space travel is only likely to become practical once humanity has become a spacefaring species.”

Incremental Growth into Space

So there is a path for development here that acknowledges our current inability to send craft with data return capability to nearby stars, and addresses the problem by moving step by step to gradually acquire the needed expertise. This takes us to the Moon and Mars and beyond:

We need to progressively move on from the International Space Station to building outposts and colonies on the Moon and Mars (as already envisaged in the Global Exploration Roadmap). We then need to begin mining asteroids for raw materials. Then, perhaps sometime in the middle of the 22nd century, we may be prepared for the great leap across interstellar space and reap the scientific and cultural rewards that will result.

iss_image

Image: To make the first interstellar mission a reality, we’ll need to move step by step from current space technologies toward a true infrastructure moving well beyond Earth orbit. Credit: NASA.

Crawford’s is a vision that places interstellar efforts into a broad context, one that will have to build the necessary levels of public support, and of course it will also have to show short-term value by way of scientific return and, in the case of asteroid mining, the necessary raw materials for growing the infrastructure. I think the middle of the 22nd Century is a highly optimistic goal, but it’s one worth working toward, and we can’t know what kind of breakthroughs may occur along the way (again, my money is on nanotech) to make the process quicker and more effective. Star travel may be hard3, but what else would we expect when it comes to translating a great imaginative venture into a mission that will someday fly?

Ian Crawford’s paper on interstellar propulsion technologies is “A Comment on “The Far Future of Exoplanet Direct Characterization”—The Case for Interstellar Space Probes,” Astrobiology 10(8) (November, 2010), pp. 853-856 (abstract).

tzf_img_post

Bradley Schaefer: A Response to Michael Hippke

Posted: 28 Jan 2016 01:25 PM PST

The question of a gradual dimming of KIC 8462852 continues to make waves, the most recent response being Michael Hippke’s preprint on the arXiv site, discussed in the post immediately below. Bradley Schaefer (Lousiana State University), who published his work on the dimming he found in now digitized photographs in the archives of Harvard College Observatory, disagrees strongly with Hippke’s findings and is concerned that the paper impugns the solid work being performed by DASCH (Digital Access to a Sky Century@Harvard). Below is Dr. Schaefer’s response with details on the astrophotographic photometry at the heart of the issue.

by Bradley E. Schaefer

schaefer

A few hours ago, Michael Hippke posted a manuscript to arXiv (http://arxiv.org/abs/1601.07314), and submitted the same manuscript to the Astrophysical Journal Letters (ApJLett). This manuscript claims to have found that the DASCH data produces light curves with secular trends (both systematic dimmings and brightenings) over the century-long records. This same DASCH data (from the collection of archival sky photographs now at Harvard Observatory) was used to recognize a dimming of KIC 8462852 (a.k.a. ‘Tabby’s Star’ or the ‘WTF star’) at an average rate of 0.165±0.013 magnitudes per century from 1890 to 1989.

This dimming from the DASCH data is just a long-time scale version of the dimming also seen with the Kepler spacecraft, and these dimmings are still a high mystery and a perplexing problem. Hippke is taking his claimed result (that the majority of DASCH light curves have major and widespread calibration errors resulting in apparent secular trends) as then implying that KIC 8462852 does not have any secular trend. This claim is easily proved wrong.

Hippke made two major errors, both of which are beginner’s mistakes, and both of which will erroneously produce apparent dimmings and brightenings when none exist. First, Hippke explicitly includes red-sensitive and yellow-sensitive photographs together with the blue-sensitive photographs. The different colors will produce systematically different brightnesses (magnitudes). The trouble is further that the red and yellow photographs are predominantly at late times in the century-long light curve (in the 1970s and 1980s), so the inclusion of many magnitudes that are systematically high or low only at the end of the century will artificially make the star appear to brighten or dim over the century.

Second, Hippke explicitly includes magnitudes from photographs with known and recognized defects. The Harvard photographs are not perfect, with some having long-trailed images, some being double exposures with stars overlapping, and some having various plate defects where the emulsion is nicked or such. The DASCH scanning and software has a robust means of identifying problem photographs, and these are objective measures independent of the magnitude. These known-poor-quality magnitudes should not be used for any sensitive purposes. Colloquially put, these are ‘garbage’. Hippke keeps all the many good DASCH magnitudes and he also adds in the garbage magnitudes, so his final light curves have many points that are systematically skewed.

The frequency of the poor-quality magnitudes varies over time, usually with more early-on during the century. And the erroneous magnitudes are variously systematically brighter or dimmer, also varying over the century. The result of Hippke’s good+garbage light curves is that the garbage points tilt the light curve by a bit. This is seen when I take all of Hippke’s same stars and data and go from his sloped light curves (including his garbage points) to flat light curves (with only the good points). The bottom line is that Hippke’s second big mistake was to include the poor-quality photographs. Garbage-in, garbage-out.

So we understand why Hippke’s secular trends are wrong. But we already knew this very well anyway. The reason is that the DASCH people have already measured many (likely up around the millions) of light curves for single main sequence stars (i.e., stars that really should be perfectly constant) and found that their light curves are actually very flat. This is in stunning contradiction to the claims of Hippke that the majority show big secular trends.

Hippke’s paper has a title of “KIC 8462852 Did Likely Not Fade During the Last 100 Years”, yet his paper never discusses or analyses any data from KIC 8462852. One reason is perhaps that he cannot get around the flatness of the five check star light curves. That is, these five stars always appear within 3 millimeters of Tabby’s Star on these 10″x8″ phootgraphs, these stars are all of similar brightness as Tabby’s Star, and they all have similar color as Tabby’s Star.

If there were any systematic problems for the DASCH data with Tabby’s star, then we should see the exact same dimming trend in the check stars as is seen for Tabby’s Star. But we do not. These ‘check stars’ serve as the classic control study in science. They serve as proof that neither the check stars nor Tabby’s Star have any substantial systematic problem. They serve as proof that Hippke’s title is wrong.

Hippke submitted his draft manuscript to ApJLett, to arXiv and to reporters even before he had any checks with experts on archival sky photographs. For example, I first read his email just about the time that he was submitting his manuscript. He did not contact any of the DASCH people, despite them being the target of his attack. Indeed, he has not talked with anyone who has any experience with or knowledge of any archival photographs. This topic has a lot of detail and many quirks, but Hippke apparently did not have the realization or the will to check out his claims. And, in an email from Hippke from early this morning, he explicitly labelled himself as “a novice” for this technical topic. So he is a novice working without bothering to check with anyone knowledgeable. As such, it is not surprising that he made beginner’s blunders.

A broader problem is now that DASCH has the publicly-stated claim that it has major, widespread, persistent calibration and measurement errors. In knowledeable circles, Hippke’s paper won’t come to anything. But these circles are not large, because few people really understand the working of DASCH or plate photometry.

So most people will simply look at the paper’s conclusions, not recognize the horrible beginner’s blunders that create the false conclusion, and only come away thinking that the DASCH light curves are “wrong” or at least “questionable”. Public perceptions do matter for many aspects. Most important for DASCH is their future success rate in funding proposals, the reception of all future papers relating to DASCH, and the future useage of the DASCH data.

Perhaps from a journalistic point of view, any ‘stirring of the pot’ is good copy. But from the point of view of science and knowledge, putting up unchecked and false claims is bad all the way around. Science has a great strength of being error-correcting, with the normal procedure now for the DASCH people to put out a full formal refutation of Hippke’s claims, and such will appear in many months. But with the one-day turn-around of arXiv and with fast journalist response, there will be many months where the reputation of DASCH is maligned. So Hippke’s choice of running to reporters before the paper appeared publicly, and disdaining any experienced advice despite being a self-proclaimed “novice”, is not good science.

tzf_img_post

About The Owl Lady

Viv Drewa is a Michigan native who has enjoyed reading and writing since 1963. Though she studied medicinal chemistry at the University of Michigan, her passion has always been writing. She had been awarded third place for her nonfiction short story about her grandfather's escape from Poland. Later, she rewrote this story and was published in the "Polish American Journal" as "From the Pages of Grandfather's Life" and has republished it on Amazon.com as a short story. Viv took creative and journalism courses to help in her transition to fulfill her dream of becoming a writer. She worked as an intern for Port Huron's 'The Times Herald", and also wrote, edited and did the layout or the Blue Water Multiple Sclerosis newsletter "Thumb Prints." She also has a business promoting authors. Owl and Pussycat Book Promotions. Viv, her husband Bob and their cat Princess, live in Fort Gratiot, Michigan.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

VIKKI PATIS

bestselling author, also known as Victoria Hawthorne

J.M. NORTHUP

AUTHOR, Copy Editor, Publisher, & Book Blogger

Profitonlinedaddy

A journey always begins with one step

Judy Mastrangelo

Artist & Author

K.M. Allan

Writing Advice From A YA Author Powered By Chocolate And Green Tea

Cassie Loves Covers

Yes, I Judge Books By Their Covers

Just Can't Help Writing

A blog about the hard work of writing

Fiction is Food

Existing in a Different World

Author D.L. Finn

Embrace your inner child by reading a good book!

Book Editing

Professional book editing for fiction and nonfiction writers

barsetshirediaries

A site for the Barsetshire Diaries Books and others

Touch My Spine Book Reviews

☆📚~A Magickal Book-Blog Featuring A Free-Spirited & Custom Made Bibliophile ~🔮